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I. INTRODUCTION

Plans for using the space shuttle orbiter vehicle to launch a

number of payloads have been under recent investigation. It is proposed

that the shuttle be launched from the Eastern Test Range inserting the

orbiter into a park orbit.

An interim upper stage (IUS) which is to be deployed from theI orbiter and used to achieve the desired final orbit has been of interest

to the Air Force as well as a number of private contractors.

The park orbit was defined by a number of considerations to be
a circular orbit with altitude of 160 n mi and inclination 37.40. It was
desired that the final orbit have an inclination of 63.40, an argument

of perigee of 2700, and a period of twelve hours. The specific twelve

hour orbit of interest has an apogee altitude of 21450 n mi and a perigee

altitude of 350 n mi. It became apparent that most of the proposed IUS

configurations could not perform the orbit transfer from park orbit to

final orbit using two burns, and still yield some desired payload values.

Consequently a study was initiated to investigate the feasibility of an

optimal three burn orbit transfer.

This report presents the results of the optimal three burn orbit

transfer investigation. Initially the definition of a simplified orbit

transfer simulation, using Keplerian orbit transfers and impulsive

velocity increments, is given. After discussing the use of a nonlinear

programming algorithm to solve this simplified problem, the results

for a family of final orbits with differ -,nt inclinations are presented.

The accuracy of the simplified simulation has been verified by comparison

with a detailed trajectory simulation.
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2. THE ORBIT TRANSFER PROBLEM

a) Three Burn Impulsive Velocity Orbit Transfer

Let us begin with the definition of a simplified orbit

transfer simulation.

1) Specify the initial state: the position vector y(to), the

velocity vector ý(to), and the initial time to. We assume that the

state is specified using an earth-centered inertial (ECI) coordinate

system, and is a point on the 160 n mi. circular park orbit with

inclination 37. 40. Furthermore we shall assume that a spherical

earth model describes the geopotential function.

2) Coast in the orbit until time = tI = to + At 1 , where dt 1 is

the length of the first coast in seconds. Essentially the coa.'t is

simulated by integrating the equations of motion, -A = - 3 yN-y,

from to to tj. The result of the integration is the state vector

y(tl), j'(tl) and because of the spherical geometry assumption this

integration can be performed quite rapidly. The complete algorithm

for two-body motion in space used in the simulation is described

in Escobal

3) Simulate the first burn, by adding to the inertial velocity

vector ,(t 1 ) the velocity increment defined by (,V 1 , A9 1 , 60 1 ).

The pitch increment A61 and the yaw increment Ik'1 are defined

with respect to the Lpcal inertial velocity as shown in Figure 1, and

are applied as a yaw-pitch-roUl sequence.

6V

Figure 1. Definition of Yaw Increment, 40, and Pitch
Increment, Ae
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4) Coast in the first transfer orbit as defined by the new

state vector until time = tz = tI + At 2 .

5) Simulate the second burn, i. e., add to the inertial velocity

vector the increment defined by (bV 2 , 66 2 , Algb).

6) Coast in the second transfer orbit urtil time = t 3 = tZ + AtZ

7) Simulate the third burn - add the increment defined by

(A V V 3 , A9 3 , A6 3 ).

8) End of Simulation - Final Orbit.

a .• It is important to note that the coast times At and the velocity

increments (AVi, A ei, AL) i = 1, Z,3, in conjunction with the initial

conditions completely determine the final orbit. The entire sequence of

events was simulated using the Generalized Trajectory Simulation (GTS)

b) The Optimization Problem

The sequence of steps required to compute the final orbit

W have been outlined. Explicitly one must choose the twelve variables

x = (At1 , AtZ, At 3 , AVI, AVZ, AV 3, AS 1 , Al,6j Ae 2 , '62' "63 1 A0 3 )

such that the objective fumction

f(x) AV I + AV 2 + AV 3  (I)

is minimized and the constraints

c1(x) ha - ZI,450 0. (2)

cZ() lip -350 = o. (3)

c 3 (x) Wp - Z70 0. (4)

c 4x N i - 63.4 zo. (5)

c5(x) = 75, 000 - ha(tl) a 0 (6)

c 6 (x) = 75,000- ha(t 2 ) A 0 (7)

are satisfied, where ha is the apogee altitude (n rr.0), hp the

perigee altitude (n mi), W the argument of perigee (deg), and i the
p

inclination (deg).
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The first two constraints on apogee and perigee altitude h and ha p
are representative of the family of twelve hour period orbits required.

The third constraint requires that the argument of perigee, W be Z700P

and the fourth constraint defines the final orbit inclination. The last

two constraints establish limits on the apogee altitudes of the first and

second transfer orbits respectively, and are included to prevent escape

orbits during the transfer. The 75000 n mi limit is somewhat arbitrary

and its significance will be discussed later.

3. THE NONLINEAR PROGRAMMING PROBLEM

The previous section outlined an example of a nonlinear programming

problem. Stated concis(ly the general problem is to determine the n-vector

X = (xI, x. .... xn) that minimizes (maximizes) the objective function

f(x) f(xl, x 2  . ... xn) (8)

subject to the equality constraints

C i(x) = 0 i = 1...k (9)

and the inequality constraints

ci(x) 20 i = (k+l). ... m. (10)

Define the Lagrangian

L(x, A) f(x) + cT(x) A (11)

where Xis the rn-vector of Lagrange multipliers. The Kuhn-Tucker

necessary conditions require that at the optimum point (x ,

VL(x , X ) : g(x*) + G(x ) A 0 (12)



where g(x) is the gradient vector of f(x), and the n x m Jacobian matrix

Sis defined by

bc.6

I mn

r G(x) [VC1e . Vc ] = (13)

&M 6 c• . . . tC M

Sn n A

Also at (x ,

Ski ci (x) 0 i = 1, .. . m (14)

where 0 i = (k+l), ... m (15)

In order to distinguish the set of constraints satisfied as equality

constraints at the solution introduce the basic set of constraints

B i Ici(x*) = 0; i = I m (16)

Assume that the gradients of the constraints in B are linearly

independent at x .

The solution of the nonlinear programming problem has

received a great deal of attention in recent years and a number of

algorithms have appeared in the literature. The accelerated multiplier

algorithm was used to solve the stated orbit transfer problem. Essen-

tially the algorithm consists of a number of cycles through the following

steps:
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Step 1. Find a point where VL(x, A) = 0, for fixed ).. by

finding the unconstrained minimum of an augmented performance

index. A rank one recursive algorithm is used for the

unconstrained optimization process.

Step 2. Estimate the Lagrange multipliers -, by minimizing

tho, error in the Kuhn-Tucker conditions. Using the multipliers,

make an estimate B for the basic set of constraints B

Step 1. Extrapolate to find a point where ci(x) = 0, assuming

the' objective function is quadratic and the constraints are linear.

Step 4. Reestimate the multipliers X, and the basis B.

Step 5. Test for Convergence.

Typically two or three cycles are required to obtain the desired accuracy.

For a more detailed description of the nonlinear programming algorithm,

the reader is referred to Ref. 3-5.

4. ORBIT TRANSFER RESULTS

The nonlinear programming algorithm given above was applied

to the stated orbit transfer problem and Figure 2 summarizes the results.

After coasting in the park orbit the first burn added 7820 fps to the

inertial velocity vector with very little pitch offset (-l. 36 ) and yaw

offset (5. 99o). The resulting transfer orbit had an apogee altitude of

17, 617 n ml, while keeping the perigee altitude and inclination essentially

unchanged. After coasting to an altitude, h, of 10, 838 n ml, where the

argument of Latitude, u, was 37. 7°, the second burn was performed. An

impun.sie velocity of 4054 fps was added with a yaw left of 74. 7 and

a positive pitch angle oi 7.21 °. Becaise of this out of plane maneuver,

most of the required plane change was accomplished, the second transfer

orblt having an tnclination of 58. 30. Notice also that the second transfer

orbit has an apogee altitude of Z3, 386 n mi and a perigee altitude of
1, 314 n mt and hence has more energy th~an the desired final orbit.

The third and final burn occurred when the argument of latitude was

10



SECOND TRANSFER ORBIT

ha = 23,386 nmi

hp 1,314 nmi
S58.30

wp 2570

SECOND BURN

S6V2= 4,054 fps
Ao &2 =7.2111

THIRD BURN A*2 -74.7'
[ &V3 = 1,514 fps h =10,838 nmi
683 =-21.8 , u = 37.70
Aý 3 = 121,20

h = 12,832 nmi FIRST TRANSFER

u =121.70 ORBIT
Sha = 17r617 nmil

roFINAL ORBIT h hp = 158.0 nmil

i ~~ ~~ h= 21,450 nmi 7B

h = 350 nmi 
p 2541

=63,40 FIRST BURN

p =p2 7 01 AV1  7,820 fps
M1 = -1 .360

i A& = =5.990

u = 2550

Figure 2. Optimal Three Burn Transfer, i = 63.4"
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121.7° at an altitude of 12,832 n mi, and was essentially a retro burn

which added 1, 514 f ps velocity with a yaw attitude of 121.20 and pitch

down of Z2. 80. The retro maneuver corrected the argument of perigee

error in the second transfer orbit while also reducing the energy of the

final orbit.

After obtaining results for the final orbit with inclination of 63. 40,

a number of other optimal solutions were obtained for larger inclinations.

In particular, Figure 3 presents the optimal three burn orbit with an

inclination of 116. 60, which required a plane change of 79.20 from

the park orbit. All other constraints in the original problem statement

remain unchanged. The first burn added 9686 fps velocity approximately

along the inertial velocity vector (11, -. l13°, , 1.080). As in

the first case,the resulting transfer orbit remained nearly unchanged in
all orbital elements except the apogee altitude which was increased to

72, 364 n mi. After coasting to an altitude of 65, 041 n mi, an additional

3, 57Z fps was added to the velocity in the direction defined by 42. 70

and Aý = -1250. The resulting transfer orbit had an inclination of I18.4°,

more than the required 116. 60 and, furthermore, the apogee altitude was

75,000 n mi. Note that for thij case the transfer orbit apogee inequality

constraint (7) is satisfied as an equality constraint, that i'Sc 6 (x) is in
the basic set of constraints B . The third burn was again a retro

maneuver, adding 3522 fps, in a direction yawed 1870 from the inertial

velocity, and pitched down 21.40.

Figure 4 presents a comparison of the minimum total velocity

increments for two and three burn transfers to a range of final orbit
inclinations. Notice that there is a reduction of approximately 5. 12%
in the total AV required to perform the mission when the three burn

approach is used for a 260 plane change (i = 63.40). The percentage

improvement increases drarnaticaliy when the plane change is 79. 20

(i = 116. 60) to 37. 5%. It should be noted that the 5. IZ% reduction

in total jV results in nearly 20% more payload capability for typical

WUS configurations.

It is interesting to observe that for a plane change greater than
0

41 , the transfer orbit apogee altitude constraint was in the optimal

basis, whereas for a plane change less than 41o the constraint was not violated.

- r .•- r- i' l•----,-,..



SECOND BURN

ZW2 = 3,572 fps
L82 = 42.7'

,A•2 =-125' SECOND TRANSFER ORBIT
h = 65,041 nmi ha = 75,000 nmi

=75.1' h= 2,692 nmi

Si = 118.40
427 = 234.70

FIRST TRANSFER THIRD BURN

ORBIT V3= 3,522 fps
h = 72,M6 nmi 3=214

B 68 -21,4'.hp = 158 nmi 3 , =17

i 37.51 h = 8,431 nmi
wp= .263.51 u = 141.91

FINAL ORBIT
ha= 21,450 nmil FIRST BURN

p350 nm'i j AV1 = 9,686 fps

i=116,60  Ae1 = -0.1130

p 2760 1= 1,08,
u = 2630

Figure 3. OptixnAl Three Burn Transfer, 1 = it6. 6
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The numerical sensitivity of the sclution in this region is apparent

irom the rapidly changing behavior of the variables in this region. It

seems clear that if the constraints did not prevent escape, the optimal

solution would be to perform the second burn at an infinite altitude. In this
Ssituation one could accomplish all of the plane change with LV 2 = 0. This

of course is not a realistic solution to the problem. In general, for a

three burn transfer requiring a plane change, one can expect that for a

large enough plane change the optimal solution requires the second

burn at infinity. The threshold value for the specific orbit transfer

considered was approximately 410 plane change.

5. EXTENSIONS AND GENERALIZATIONS

a) Multiple Stage Vehicles

The results presented so far do not involve the vehicle

mass in any of the computations. When dealing with a restartable single

stage vehicle,this approach can be valuable. However, when a multiple

stage vehicle is considered, the mais changes that occur at staging

cannot be overlooked, In particular one can consider computing the

AV. for an N-stage vehicle according to the equations.J

N

J E (Pk + S k

AV. g I In ,~ j =1, Z,. .N, (17)

ki 3
J kE_ (P k + sk) Pj

where J is the weight of the tiyload, Pk the weight of the propellant in

the k th stage, Sk the weight of the structure of the k th stage, 'k the

effective specific impulse of the k th stage and g 0 the gravitational

constant.

By us'ni the equations (17) tu define the velocity increments in

the trajectory simulation described in Section Za) one can consider a

number of different optimization problems- Speclfically, one can pose a

maxinvam payload orbit transfer by defining the objective function in Eq.

(I) to be the payload J. Sinc.- the velocity increments are defined by

Eq. (17), they are not treated as optimirzation variables. Instead the



variable set must contain the payload J. When designing a vehicle

one may also want the propellant and/or structure weights P k and Sk

to be treated as variables. Cases have been run using each of the

different sets of variables, for preliminary design analysis of the IUS

vehicle. It should be clear that the maximum payload capability

to a given orbit does not necessarily result by flying a minimum &V

orbit transfer, unless the vehicle's weights Pk and Sk have been

specifically designed for that orbit.

b) Finite Burn and Oblate Earth Effects

In the simulation an impulsive velocity approximation

to a finite burn was used, and oblate eath effects were neglected in

the geopotential model. To assess the effect of the3e approximations,

the results were compared with those obtained from a detailed

simulation. The variables for the detailed simulation included pitch

and yaw attitudes at the beginning of each burn, co istant pitch and yaw

rates during the burns, the burn times, and locatiox of each burn. The

payload difference for typical missions was quite small (normally within

a few percent).

c) Mirror Image Solutions

It should be observed that the optimization algorithm

used to obtain the results presented only obtains a local optimum point.

Another local solution to the problem doeL exist which we refer to as a

mirror image solution. Because of the problem symmetry, the optimal

value of the objective function is the same, although the location of the

burns are different. For example, in the mirror image solution to the

results presented in Fig. 2. the argument of ?at'tude at the start of

the second burn is in the second quadrant rather than in the first.

Similarly, the argument of latitude for the beginning of the third burn

is in the first quadrant rather than the second. Although the objective

function is the same between the mirror image and the regular solution,

there may be some other criteria for preferring one to the other. For

example, the total transfer time or ground track for one case may be more

desirable than the other.
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6. SUMMARY AND CONCLUSIONS

The report outlines a nonlinear programming approach for

obtaining the optimal three burn solutions to a class of orbit transfer

problems requiring large changes in orbital inclination. For this type

of probleimrthe first burn raises the apogee altitude of the first transfer

orbit, and the second burn is performed at a high altitude. Since the

velocity is low, most of the plane change can be efficiently accomplished

by this burn. The final burn thus decreases the energy to meet the

final orbit constraints. There can be a significant 4V benefit derived from

a three burn transfer with respect to a two burn transfer as Figure 4

indicates. Generalization of the approach to multiple stage vehicles as

as well as more detailed trajectory simulations is discussed. The method

is currently being used to solve a wide variety of trajectory optimization

problems 9f varying complexity.
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